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Abstract. We consider perturbations by relevant interactions of tho-dimensional confor- 
mally invariant rational field theories. The meromorphic structure-with respect to the 
scaling dimensions of the perturbing interactions-of the correlation functions is made  
explicit through a successive application of Stoke's theorem. The resulting decomposition 
of the amplitudes into holomorphic and  antiholomorphic factors yields a representation 
of the meromorphic structure in terms of the basic data  of the rational field theory,  which 
are  scaling dimensions,  operator product coefficients and  braid matrices. We exemplify 
the general deduction by a concrete calculation to the third order  in the coupling constant 
of the perturbing interaction. 

1. Introduction 

The benefits of conformal invariance in any number of spacetime dimensions for the 
simplification of quantum field theories have been well known for a long time [l]. 
The even greater benefits of the infinite-dimensional conformal symmetry in two 
spacetime dimensions, first realised in the pioneering paper of Belavin et al [2], led 
to the discovery of several series of (by now called) rational conformally invariant 
field theories ( RCFT) [3] which by definition are theories with a finite number of primary 
operators (that is, primary with respect to the conformal symmetry or an extension 
thereof). We want to investigate in this paper perturbation theory around these RCFT, 
with conformally non-invariant additions to the action of the form 

AS=g. {  d 'x+(x)  g = ( g l , .  . .  9 gh) 4 = ( $ I , . . . , ( L h )  (1) 

where g denotes an ensemble of coupling constants and t,b stands for a collection of 
primary operators of the RCFT we start from with relevant scaling dimensions d*, < 2 
but rather near to marginality. We hope to mediate the insight to the reader that the 
striking structural simplicity of RCFT has its repercussions in the here investigated 
perturbation theory (m) in so far as the latter is much easier to control than most of 
the conventional PT around Gaussian fixed points. 

The kind of PT around RCFT we are aiming at was first considered by Zamolodchikov 
[4], by Ludwig [5] and Ludwig and Cardy [6] (see also [7]). Those authors drew 
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2972 F Constantinescu and R Flume 

conclusions from calculations up to second order in the coupling. We intend to describe 
here in some detail the general structure of the PT. We will derive a representation of 
the perturbative corrections to correlation functions, the main virtue of which is that 
it gives a concise and explicit determination of the meromorphic behaviour in the 
scaling dimensions of the operators coming into focus. We will perform towards the 
end of the paper a concrete perturbative calculation to third order in the coupling 
which displays the essential features showing up at all orders of PT. 

There are indications [8] that some of the models, to which our methods apply, 
may be integrable systems (away from the critical point). Considerations pertinent to 
integrability will not play any role in the following. 

2. Rational conformal field theory 

We recall some basic facts concerning the structure of RCFTS. We give by no means 
a complete account, for which we refer to [9-121, but confine ourselves to collect some 
material in order to make the succeeding argument reasonably self-contained. 

The field content of the RCFT to be considered is given by: 
(i) finitely many chiral fields (among them the z-z component Tzz of the energy 

momentum tensor) generating a chiral symmetry algebra E which may be the Virasoro 
algebra or one of its extensions; 

(ii) an anti-chiral symmetry algebra of field E isomorphic to E (we assume parity 
invariance) ; 

(iii) a finite number, say N, of physical fields, denoted by O,, . . . , a,,, being 
primary with respect to the symmetry algebras E and E; 

(iv) descendent fields which arise through action of the Laurent components of 
the fields in E and E on the @$ and the unit operator 1. 

The correlation functions of the physical primary fields (as well as those of their 
descendants) decompose into sums of terms each of which factorises into a holomorphic 
(chiral) and an antiholomorphic (anti-chiral) piece. The pieces are called ‘conformal 
blocks’. A convenient description of the block structure is achieved through the 
introduction of chiral vertex operators [9]. We assume for simplicity that the physical 
primary operators are scalars under spacetime rotations. They have as such isomorphic 
transformation properties vis a vis E and E. The states Os(0)]O) = I9), with 10) denoting 
the ground state of our RCFT, are lowest-weight states of representations of E and E 
which are built up through the action of the two algebras on 19). O,+ may be thought 
of as being composed of a chiral field cpI and an anti-chiral field +,, with cp, and 
mediating the corresponding lowest-weight representations of E and E, respectively. 
We introduce the notations 

cp! (0)lO) = I i )  +,(O)/O)= F) 
l i )0 lz7)-  14) 

H,  = El i ) ,  H,  = ,!?I r). 
The space H of physical states is given by the sum 

N 

H =  H , @ H ,  

Ho= EIO), Bo= ,??IO). 

I =o 
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Let PI (p,) be the projector onto the chiral (antichiral) subspace H, (fi,), Chiral 
(antichiral) vertex operators z )  ( C p ; , , (  z ) )  are defined through 

and write formally = cp,@(P,. 
The CL), are here expansion coefficients of the operator product algebra (OPA),  

parametrising the strength of the fusion of operators cpa @ ( P a  and (P), 0 (Pb into cpc 0 Cp,. 
The expansion coefficients are determined through the conformal bootstrap (see 
be1ow)t. 

The above-mentioned conformal blocks appear in the decomposition of correlation 
functions of physical operators into correlations of chiral and anti-chiral vertex 
operators: 

The order of chiral vertex operators chosen on the R H S  of (6) is related to a particular 
fusion scheme (cf figure l ( a ) ) .  Other choices of order of vertex operators will be 
related to different but equivalent fusion schemes. The elementary operations generat- 
ing the general transformation from one to another fusion scheme are obviously 
interchanges of neighbouring vertex operators. Such an elementary 'braiding' operation 
is pictorially represented in figure l ( b ) .  The conformal blocks 

and 

Is-2 15-1 Is is-z i s - !  i s  

Figure 1. 

* W e  deal here and in the following exclusively with scalar operators. I t  will be assumed that the fusion 
algebra is not plagued by degeneracies, i.e. the qualitative fusion constants are supposed to be zero or one. 
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with A, denoting here the scaling dimension of the chiral field cpo.  The coefficients 
dn1, n , _ l  are fixed through the commutation relations of the symmetry algebra E. The 
linear relations (7) comprise in fact an analytic continuation of the block functions 
from R,  to R :  and vice versa. The analytic continuation can be performed along two 
homotopically non-equivalent paths giving rise in general to phase ambiguities which 
are reflected in equation (7)  through the labels *. 

The matrices B and their analogues figuring in other permutations of neighbouring 
vertex operators generate a representation of the braid group. We refer to [ 10-121 for 
the ensuing consistency relations. We will need for the following discussion the 
connection between the expansion coefficients CEc (equation ( 5 ) )  and the braid matrices 
appearing in equation (7) .  The important point is that the correlations of physical 
operators have to be one-valued functions with respect to all variables as they are 
moving in the Euclidean plane. One-valuedness is guaranteed in the region R because 
the correlation is given (cf ( 6 ) )  by a sum of terms each being built up of a holomorphic 
function and its complex conjugate. The phases arising along paths encircling the 
origin in the space of difference variables z,, = z ,  - z ,  cancel among the holomorphic 
and antiholomorphic pieces. The same cancellation mechanism applies also to the 
correlation functions analytically continued from R,  to R:  provided that the expansion 
coefficients satisfy the relations 

3. Perturbation theory 

We are now prepared to enter the discussion of PT around some RCFT, call it Ro,  with 
a perturbation given by equation (1).  We will only consider cases in which the scaling 
dimensions d&, of the interaction @ = ($, , . . . , $ k )  satisfy 

1 < d&, d 2 CL, = PI 0 ( P I  dh, = + A + >  = 2A,<. (12) 
It is assumed that the operators collected in t,b are closed under the OPA modulo 
irrelevant operators. Indirect couplings to relevant or marginal operators others than 
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those in J, through multiple fusion processes are also assumed not to exist. One finds 
through straightforward infrared power counting that the quoted restrictions give rise 
to an infrared finite PT for all correlation functions?. 

Let X ( ( z , ,  . T I ) ,  . . . , ( z r ,  . T r ) )  denote a bunch of local operators with positions at 
( z , ,  T I ) ,  , . . , ( z r ,  2 , ) .  We are concerned with the Cell-Mann-Low series 

where the disconnected vacuum amplitudes are discarded. 
The integrand on the RHS of (13) is given as an ( n  + r)-point correlation function 

of the chosen conformally invariant theory R , .  An estimate of the singularities 
occurring at short distances in the Gell-Mann-Low series is provided by the possibility 
of decomposing the correlations into suitable conformal blocks. Let us inspect the 
singularities appearing in the nth-order term of the series (13) from a region where 
all n interaction points are close to each other but are well separated from the positions 
( z I ,  2,) . . . ( z ? ,  T r )  of the external operators. We divide the 2n-dimensional integration 
domain into sectors 

9p = {x = (XI, . . . , Xn);/Xn.pln-l,/ < lxn,p(n-l)l . . . <Ixn.,~l,l> 

with p denoting an element of the permutation group S,n- l l .  The conformal block 
functions associated with a fusion scheme being naturally attached to ZZJ, (cf figure 2 )  
give rise to power-like singularities of the form 

We recall the definition 

A b b  = A. +hi, - A' 

with A, being the scaling dimension of the chiral field 9,. The labels i, decorating 
the exponents in (14) are meant to allude to the scaling dimension of the chiral part 
of the interaction whereas the labels k ,  hint at 'intermediate' operators appearing in 
the fusion scheme according to the rules of the OPA of R,,. 

The sum of exponents in (14) 

kn-1 

Figure 2. 

t At least in the sense of an asymptotic expansion in the deviation from strict marginality. 



2976 F Constantinescu and R Flume 

provides a rough measure for the strength of the singularities present at the coincidence 
points = . . . x " , ~  = 0 of the correlation function (+ , , (x l ,  f l )  . . . +,,, (x,,, X,)X). The 
singularity is integrable with respect to the integration measure ll:Z: d2xn,, in the case 

(16) 

(The factor 2 on the L H S  of the inequality derives from the fact that singularities of 
the physical correlations are essentially the modulus squared of those quoted in (14).) 
Subtractions and therewith the specification of renormalisation constants are necessary 
in the opposite case 

26AI'-l < 2 ( n  - 1). 

2ak+ 2 2 ( n  - 1). (17) 

The conclusion to be drawn from (15)-(17) is that PT around RCFT with marginal or 
relevant interactions (2A, 2 )  is, with respect to short-distance singularities, not 
different from standard PT with renormalisable and super-renormalisable interactions 
around a Gaussian fixed point: the appearance of irrelevant (non-renormalisable) 
operators, i.e. the occurrence of an operator at the end of the fusion chain with a 
scaling dimension Ak, , l  5 1, is not accompanied by a new singularity and irrelevant 
interactions do not interfere with the renormalisation of the marginal (renormalisable) 
interactions. (There is no dependence of S on intermediate operators. The influence 
of non-renormalisable interactions could only enter through such intermediate 
operators.) 

Our main tool for the analysis of the Gell-Mann-Low ( G M L )  series (equation (13)) 
consists of a decomposition of multiple two-dimensional integrals over the Euclidean 
plane into contour integrals through successive application of Stokes' theorem. Hints 
to the use of Stokes' theorem in this context have been given by Dotsenko in [ 131 and 
by one of the present authors in [14]. 

The nth-order integrand of the G M L  series decomposes, as discussed in some detail 
above, into holomorphic and antiholomorphic pieces: 

where F: denotes a vector of holomorphic conformal block functions (and F its 
complex conjugate). The holomorphy domain of F is given by the universal covering 

with subvarieties of coinciding arguments being removed. We want to look 
on F for a moment as an analytic function in one variable, say x,,  with the other 
variables taken as fixed parameters and to restrict it to one Riemann sheet by putting 
cuts in the complex plane from x 2 . .  . x,, zl . . . z,  to infinity as indicated in figure 3. 
The product Fi-Fi  has clearly no discontinuity over the cuts. A slightly stronger 
property concerning the absence of discontinuities along the cuts also holds: let y , ,  

of @ l n + r )  

Figure 3. 
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and y2* be two points on some cut with (i) denoting boundary values from the RHS 
and LH respectively. One has the equality 

(18) 

This is a simple consequence of the fact that one might assume according to equations 
(8) and (9) without loss of generality that the basis of block functions has been chosen 
so that the components of F: vary over the cut under consideration by constant phase 
factors. 

Let H:(a)(x,)  denote the integral of F:, H : ( a ) ( x , ) = ~ ~ ' d t F : ( t ; .  . . )  where the 
point a is chosen arbitrarily. The integration contour from a to x ,  is taken so that 
none of the cuts of figure 3 is crossed. The application of Stokes' theorem in the 
x,-plane yields 

- k  - k  F:(y,+, . . .)Fi (yz+ ,  . . .) = F:(y,-, . . .)Fi (yz_ ,  . . .). 

where %'/ denotes a clockwise contour around the cut (cf figure 3) starting at xI. We 
use here and in the following the notation z ,  = x,+,. Decomposing 

(20) 

one finds from equation (18) that only the first term of the RHS in (20) yields a 
non-vanishing contribution to the contour integral along %/ in equation (19). We arrive 
therewith after putting a = x2 at 

A more symmetric treatment of the homomorphic and antiholomorphic pieces is still 
desirable. The contour integral of the holomorphic piece may be rewritten as 1: d t  F = ( j d t  F+ 1 j6, d t  F+ j<),+ d t  F )  

f 2 -  2 < r < /  

where %::,- and VI,- denote contours from 
that 

to x and from x to CC respectively such 

Vx = %.-+ %-  (23) 
holds. 

We can freely move from one system of conformal block functions to another one 
(cf equations (7), (10) and (11)) in order to relate the integrals j,,, to j,,. Let F:"." 
be a basis of block functions associated with a fusion scheme in which the operators 
cpi,(x,) and q l l ( x , )  are coupled in the first fusion step to operators which we denote by 
cpk(x,). The vector components of F:"." are (partially) classified through the intermedi- 
ate operators cpk(x1): 

~ : ( l , / l  = ~ . . . k l  I , / )  
. . .  111,  . 



2978 F Constantinescu and R Flume 

The component F::::l(,:.J) picks up along the contour VI,-, a phase factor exp [27ri(AIl+ 
Ail  - A k ) ]  5 27riAfl,i1 relative to the position on the contour %,,+. This leads together 
with (23) to the relations 

Fi.k(l.ll = (1 -e"''(:,,l)-l Fi.k",J) (24) 

(25) 

I, 
- ( 1  - e - 2 ~ i ~ ~ ~ . ~ , ) - '  1 . . . . 

1 
J, 61, - - f l  

xi.+ 

Inserting (24) and (25) into the half the sum of (22a) and (22b) and going back with 
this to (21) we obtain 

where 
0 x = o  -; x > o  

x < o  

and I3 C stands for the product of the coefficients C which depend on k corresponding 
to the particular fusion scheme which has been used. We have therewith completed 
the first step in our programme to rewrite two-dimensional integrals over the Euclidean 
plane as pairs of contour integrals. Let us assume now that k integrations have already 
been treated in this spirit. We will make use of the abbreviating notation 

l,, dtll . . . I,, . . . I,,, dt,,,, . . . 5 dt,,+,, F f  = = 
\ I  1 ,  6, . * 

I ,  contours i, contours 

and make use of an analogous notation si,, for the complex conjugate integrals. 
Contour is meant as before to swing around a cut starting at xI. Multiple contours 
( s ~  > 1) around the same cut are taken such that one contour is enclosed by another 
without crossings (cf figure 4). Our assumption, strictly speaking an induction 
hypothesis, amounts to a relation of the type: 

Figure 4. 
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with coefficients hs.i being determined through braid matrices and the spectrum of 
scaling dimensions of the RCFT R,. This will be explained further below. Note that 
%?? is the complex conjugate of %’?. 

We perform the transformation of the integral 5 d2 tk+ ,  in order to verify the general 
validity of relations like equation (27) and to obtain at the same time insight into the 
structure of the coefficients hs,j. We may assume without loss of generality that terms 
with contours around xk+l do not appear on the R H S  of equation (27). This can always 
been achieved through application of Cauchy’s theorem to %/ 1 ~ - 1 1  2 which with the 
present notation reads as 

% / ; I  /;;- % ‘ / ; , - 1 / y 1  /;b”-, . . -  % / y I  l y l  =o. (28) 

The manipulation which led us from equation (19) to equation (21) can easily be 
adapted. 

1 h , i  d2h+i  
I s ,  = IS  = k 

mak+2 

x ((vs,/+- q s , / - ) 8 / , m + & ( l -  m)gs , / l / ,mzk+3) .  (29) 

The dependence on block ( i ,  k) labels has been suppressed here in xs, ( gi, ). The 
contour of f k t l  in %,,, (%+) is supposed to enclose all other contours at the same 
position x ~ .  We will have achieved our goal to recover from the RHS of (29) a 
representation analogous to the RHS of equation (27) if we can replace the terms 
( %s,l+ - VS,/-) on the RHS of equation (29) by ‘complete’ contour integrals (cf figure 4). 
Let us inspect closer as a representative example (the other integrals have to be treated 
similarly) the term 

%‘/A,/+, 1 > k + 1. 

The first k contours encircle here xI and the contour of tk+l  goes to the left of the 
contours of t I , .  . . , t k .  Let 9jk+” denote the union of contours of t l , .  . . , t k t l  which 
build up % , h , / + .  

The following decomposition of % ‘ / h , / +  will be useful: 

denotes here the permutation group of k + 1 elements and tf,nl = xI - t,. We 
choose for every sector 9jk+’),P a basis of conformal blocks in which the singularities 
with respect to the difference variables i = 1, . . . , k +  1, appear in diagonalised 
form (the necessity to change from one set of blocks to another one induces here-and 
similarly at other places-a dependence on braid matrices). A typical contribution to 
a component %‘lh.l+ is of the form 

(30) I xi- 
n (1 -e‘”’( 1) 5 “* dt  P l k - r l l  

X l P I i t l l  
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We have chosen contours on the LHS of the cut starting at xI instead of contours on 
both sides. The prefactor ll (1 -e2“‘,.,’) takes care of the difference between the two 
choices. (The very point of decomposing %?,k,/+ into pieces % ? F , / +  and of choosing in 
the sectors %‘:k+’’3p  appropriate bases of conformal blocks is connected with the fact 
that one can find only in this way a separation of contributions whose discontinuities 
over the cut are governed by constant phase factors.) We can further transform the 
RHS of (30) by the following self-evident manipulationst: 

[X !+  . , . [ X!+ 

d f P ( k + l )  dtP(l,(. . .) 
I P I h t l !  fPl21 

We have managed in (31b) to rewrite (30) such that only less than k +  1 contours 
appear at a time either along the cut from t p ( k + l )  to CO or along the one starting at x I .  

The problem of re-expressing these integrals (with less than ( k +  1) contours) 
through ‘complete’ integrals has supposedly been solved in previous induction steps. 
One has to make iterative use of identities of the kind 

(with the understanding that on the RHS the contour of the integral standing to the 
left encloses the contour of the integral on the right) to arrive finally at a representation 
as in (27). We will not give in this paper the explicit expressions for the general 
nth-order term of the G M L  series but confine ourselves to describe in the next section 
some details of the third-order term. We end this section with the following concluding 
remarks. 

( a )  The integrals on the R H S  of (29) are free from ultraviolet (uv) singularities 
since the contours can be deformed such that the interaction points never approach 
each other beyond some finite distance. Infrared divergences of the integrals are 
excluded (after the subtraction of disconnected vacuum amplitudes) through the 
assumptions made at the beginning of this section. 

( b )  The possible uv singularities are encoded into the (hypothetical) meromorphic 
behaviour of the coefficients h,,* with respect to the spectrum of operators in Ro. 

(c) Looking back on the above manipulations which were designed in order to 
transform the ( k  + 1)th integration, one easily realises the general structure of the 
coefficients hs,s. It is given by products of braid matrix elements and ratios of 
trigonometric functions, the arguments of which are proportional to combinations of 
scaling dimensions. 

f In (310) A, denotes the scaling dimension of the operator appearing at the end of the fusion scheme 
related to the sector k2$kf”.P. 
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4. Coupling constant renormalisation to third order 

We want to discuss some of the details of the calculations to evaluate the third order 
in the coupling constant. To fix the ideas let us think of the unitary series of RCFT 

with central Virasoro charge 

m c Z  m a 3  6 
m ( m + l )  

c , = l -  

(see Friedan er a1 quoted in [3]). A closed subalgebra of the OPA of the models is 
built up by scalar operators denoted 

with scaling dimensions 

1 
2 m ( m + l )  

d:I",'=2A::'= ( (m(s  - 1) - 1)'- 1) 

We consider, following Cardy and Ludwig [6], the perturbation 

A s  = g J dZx +(1,31,(1,3!. (33) 

Operators figuring according to the OPA in the G M L  series of A S  are the unit operator, 
$(1,31,(1,31 itself with scaling dimension 

and irrelevant operators. The contributions coming from fusions ending up with the 
unit operator are discarded since these amount to contributions of disconnected vacuum 
amplitudes. The particular simplicity of the chosen perturbation is due to the fact that 
no other relevant operators are induced through fusions, than just the one we started 
from. It means that one has to handle only a single coupling constant. 

The formulae for the G M L  series up to second order in the coupling constant have 
already been worked out in the previous section. We repeat these formulae here for 
convenience. Let i,bt = cp,@$,  be some arbitrary local operators of the RCFT under 
consideration. Setting ~ 1 , 3  cp and @,,3 = 4 we have 

The subscripts (1 , l )  of the block functions on the RHS refer to a base in which the 
operators cp (x l )  and cpl ( x ~ )  are fused at the first place whereas the superscript k refers 
to the particular operator emerging from that first fusion. 

Our main purpose consists in displaying the above mentioned meromorphic struc- 
ture in the scaling dimension and to verify that the subtraction of pole terms can be 

( - 1  ( - !  
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interpreted as addition of local counterterms (in the spirit of field theoretical 
Lagrangean PT). We concentrate on the pieces 

from the RHS of equation (35)  whose singularity structure can be related to renormalisa- 
tion of the coupling constant. (Singularities going along with contour integrals around 
x 3 ,  , . . , x 3 + r  are related to wavefunction renormalisation.) The first term in the sum 

(36)  is supposed to represent the contribution of that fusion which reproduced c p ( @ ) .  
The following terms correspond to couplings to irrelevant operators. The prefactor 

of the first term has a simple pole for I & ~ , ~ , , ~ , ~ ~  approaching marginality 
(A::’+ l e y ,  + O ) :  

( - 1  ( - 1  

From both contour integrals j , 2 d x l  and J F 2 d 3 ,  there survive in this limit only the 
residua of the (simple) pole term of the integrand in the complex difference variables 
x , , ~  and respectively, The non-local parts of the integrals drop out since the 
discontinuities over the cut vanish in this limit. The result is: 

1 d 2 x I ( ~ 1 , 3 ( x I ,  % ) 4 1 , d x 2 ,  f A  n C P , @ @ ~ ( X , + , ,  % + , I )  

It might happen that some of the prefactors of the other terms in (35)  become 
accidentally singular (if  one hits an integer A:l,3)i But these singularities are 
compensated through the simultaneously vanishing of the discontinuity over the cut. 
There are in this case (where irrelevant operators emerge from the fusion process) no 
non-smooth terms at the coincidence point x I  = x2 and, 3, = Z 2 .  

Let us now turn to the partial evaluation of a third-order term of the G M L  series: 

The first equality is obtained through insertion of the previous calculation (equation 
(35) ) .  The second equality results from the decomposition of the integral 5 d3x- over 
the plane into contour integrals 5 dt, and 5 dl, respectively. (We repeat here the 
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calculations which lead us above to equation (21).) We content ourselves to discuss 
the singularities of that part of the integrals in (40) where both arguments f ,  and 
t2 ( I, and I,) are near to x3 (Z3). We intend to extract the coefficient of the second-order 
pole in y,. The pieces of (40) contributing potentially to the pole term are those where 
the contours of t2  and T, are along the cut starting at x3 and g3 respectively and where 
at least one of the contours in tl(Il) surround x1 (2,) or x3 (2,)  or both points. The 
terms in question are of the form 

where we use the notation 

The t 2  (I,) contour in (41) is supposed to be enclosed by the t l  (I,) contour if the latter 
extends over + %', ( e2+ g3). The t ,  contour is otherwise put 'nearer' to the cut 
starting at x3 (2 , )  than the t 2  (I,) contour. Following the general strategy explained 
above (cf equations (28)-(31)) we first express A in terms of integrals which are 
path-ordered along the x3-cut. Let us use the definitions 

The indices 213 and 123 refer to the bases of conformal blocks 
UJ UJ 
(. ' * (PP,,(t,)(P",(t,)(P~~(X~)) (44) 

( a  . 1 c p P , ~ ( r l ) ( p ~ , ( ~ , ) ( P ~ O ( x 3 ) )  (45) 

(PP,, = PPCpPU. 

and 

respectively. We recall here the notation (cf equation (3))  

The bases (44) and (45) are related to each other through braiding matrices as follows: 

(B+)z . * ( P ~ ~ ' ( r 2 ) ( P , " , ( f l ) ( P ~ 0 ( x 3 ) ) = ( .  . . c p ~ ~ ( t l ) ( p ~ , ( t , ) c p ~ 0 ( x 3 ) )  (46) 
U' 

2 (B=)z'(. 1 . c p P , o ' ( f 1 ) ( p ~ , ( t 2 ) ( p ~ O ( X 3 ) ) = ( .  . * ( P P , O ( ~ ~ ) ( ~ ~ , ( ~ I ) ~ ~ O ( X ~ ) ) .  
U' 

(47) 

Here the dependence of the braiding matrices on the block labels P and cp is suppressed. 
We will also use the notations 

(pl)eo. = a,,, e211'Ak 

( P ~ ) , , .  = a,,. 
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Rewriting (41) in terms of the functions X“’  and X”’ and their complex conjugates 
one obtains 

where 

A11 = (1 +PI P2)( 1 - PT)(l- P?) - (1 - PT)BS( 1 - PT)(l- P,)B+( 1 - PI) 

A2, = (1 +PI)( 1 + P2)(1 - P7)l- Pf) 
~ 2 1 = ~ ~ 2 = - ( 1 - ~ ~ ) ( l - P ~ ) ( 1 - P ~ ) B , ( 1 - P ) + 2 ( 1 - P ~ ) B ~ ( 1 - P ~ ) ( 1 + P 1 P , ) .  

Our final goal is to express A in terms of the following set of functions which are 
represented through ‘complete’ contours: 

r r 

The reversed relations read as 

1 
Y ,  + D-’ - D(B-Y2- Yl)  XI =- 

1 
1 - PI 1-PT 

D ( B -  Yl - Yz) Y 2 + D - ’ -  X,=- 
1 1 

1 - Pz 1-PT 

where 

D = (PT)’”B-( PT)’,“. 

The verification of the fact that (49), (50) and  (51) ,  (52) are indeed the inverse of each 
other is achieved through the above-mentioned polynomial consistency equation. 
Inserting equations (51), (52)) in equation (48) and including C we arrive at  

where 

D’- 1-PT 1 - P1 
C T -T 

11 - 22- 

1 Tlz= BID’- D. 
1-PT 
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The diagonal matrix C comprises here the dependence on the coefficients of the 
operator product algebra. The leading singularities for y ,  near to one are easily 
extracted from equation (53 )  if one takes into account the relations 

BSDL = DT(pT)1!2 

( PT ) = - 1 + O( y,, ) 

and exploits the fact that the combinations of functions 

Z , = D ( B - Y 2 -  Y , )  

2, = D( B- Y ,  - Y2) 

are to be identified with the following ‘complete’ contour integral expressions 

(54) 

The result is 

which could have been guessed in advance. Our purpose here was to show explicitly 
the locality of the leading singularity. (Locality is no longer manifest if one decomposes 
the volume integrals of the G M L  series into contour integrals.) The main ingredient 
for this demonstration is the arsenal of polynomial consistency relations which are 
underlying equations (51),  ( 5 2 ) ,  (54), (55) and ( 5 6 ) .  

5. Outlook 

Our main purpose in this paper was to show that PT around RCFT with relevant 
perturbations can be organised such that the structure of the whole series is governed 
through data available from four point correlations which are braid matrices and the 
spectrum of singular exponents of the primary local operators. We believe that it is 
comparatively easy within this framework to establish convergence. We will come 
back to this point elsewhere. 
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